If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+7b-120=0
a = 1; b = 7; c = -120;
Δ = b2-4ac
Δ = 72-4·1·(-120)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-23}{2*1}=\frac{-30}{2} =-15 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+23}{2*1}=\frac{16}{2} =8 $
| —0.1=—10c | | 8(5n-2)-4=180 | | 360=180+8x | | 3=p4-1 | | 160+c=180 | | -12=12x+32 | | 6(-6m+2)=6(m+2) | | 32=5-3d | | 8x=2(2x-2) | | 140+c=180 | | 7x-8=3x=16 | | 4x+x-5=6x-2x+3 | | (5x-18)-x=180 | | 16^(2x)=64^(x-5) | | 1=5x-90 | | 5(p-5)+4p=-(p+7)+2 | | 4/k-3=1 | | p+125=269 | | X^2+18x-29=-10 | | 2x+15=-x-12 | | 2(3x-5)=2(3x-2)+1 | | 12.4+m=20 | | 60+c=180 | | 6s-4=8(2+1/4s) | | 2xx=126 | | 4=10/x | | 6(8+4x)=2(5-11x) | | 13x-4x=12 | | (6x+4)(4=(3x+(4)/5 | | 3^2x=9^2x+1 | | 4=10/320-x | | 50x +160=1000 |